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A B S T R A C T

Alfalfa (Medicago sativa L.), a perennial legume forage crop, is valued for its high yield and quality. However, its 
survival during winter can be affected by several factors, and its mortality significantly impacts alfalfa pro
duction, necessitating timely and spatially detailed monitoring. This study aims to propose a framework for 
estimating alfalfa stem density using satellite imagery and machine learning (ML) algorithms, which can lead to 
winter mortality detection early in the spring and provide a better understanding of potential total dry matter. 
Three ML models—support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGB)— 
were applied to Harmonized Landsat Sentinel (Landsat only, which is HLSL30) and Sentinel-2 datasets, accessed 
via the Google Earth Engine (GEE) Python API. Two scenarios were evaluated: 1) single-date data, capturing 
satellite images within a 3-day time window to the date of field sample measurement, and 2) time-series data, in 
which three satellite images were collected for the measurements during the first growing cycle. Both classifi
cation and regression models were used in both scenarios to estimate and classify alfalfa stem density. ML 
Classification models categorized stem density into four groups (bare, low-density, medium-density, and high- 
density), achieving an accuracy of up to 85 % using Sentinel-2 data and 84 % using HLSL30 data. The results 
also indicated that alfalfa stem density can be estimated with an error of ~ ±6-9 stems/foot2 (1 foot = 30.48 cm) 
using ML regression models. RF outperformed XGB and SVM in classification and regression tasks, showing 
superior accuracy in classifying density and lower root mean square error (RMSE) in estimating stem density. Our 
proposed framework model can offer valuable information to growers and decision-makers, enabling them to 
make timely and informed decisions.

1. Introduction

The global food supply is at risk due to population growth and 
climate change (Zhao et al., 2017). Global yield production of major 
cereal crops is expected to drop by 7 to 23 % by the end of the century if 
farming practices are not adapted to the changing climate (Rezaei et al., 
2023). Climate change also impacts livestock productivity, in both direct 
and indirect ways, by affecting the quantity and quality of forage re
sources (Giridhar and Samireddypalle, 2015). By mid-century, climate 
change may enhance the forage crop productivity in the cold and humid 
regions of North America (Thivierge et al., 2023). This improvement is 
due to rising temperatures, higher atmospheric CO2 levels, and an 

extended growing season compared to the 1990 − 2000 timeframe 
(Thivierge et al., 2023). However, increased winter thaws, less protec
tive snow cover, and rising summer drought events may adversely affect 
winter survival and summer regrowth. Consequently, this may lead to a 
potential decline in the resilience of perennial forages gradually 
(Thivierge et al., 2023).

Alfalfa is one of the most significant crops among forage legumes 
(Kayad et al., 2016). It is referred to as the “queen of forage” owing to its 
high yield, nutritional attributes, and ability to sequester carbon 
(Saifuzzaman et al., 2022). It is grown in over 80 countries, covering a 
total area of 35 million hectares (Kayad et al., 2016). Alfalfa, or mixtures 
of alfalfa and grass, constitutes 44 % of the perennial forage areas in 
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Eastern Canada (Canada, 2021; Thivierge et al., 2023) and 20 % in the 
northeastern United States (Cherney et al., 2020). Alfalfa is a perennial 
crop, which indicates that its growing period spans several years under 
favorable growing conditions. It is cut several times annually, and 
typically, each growing cycle spans 30 to 35 days between mid-April and 
September in the Canadian croplands.

Nevertheless, climatic conditions such as freezing temperatures 
without protective snow cover, cyclical warm and freezing air temper
atures, fall soil moisture, and the presence of ice sheets have been linked 
to decreased winter survival rates (Castonguay et al., 2006; McKenzie 
et al., 1988). These conditions occur in cold-temperature regions, 
particularly in Canada, the northern United States, and other areas with 
harsh winters. The resulting yield reduction can be a considerable 
concern for feedstock supplies (Sapkota et al., 2023). Consequently, 
detecting the damaged areas can assist growers, especially in Canada, 
where the growing season is relatively short, in preparing for specific 
agricultural practices while also enabling investors, consulting agencies, 
and decision-makers to proactively prepare for both importing and 
exporting of hay based on the predicted yield (Feng et al., 2020).

One standard method for evaluating alfalfa stand productivity po
tential and deciding whether to keep a damaged stand is to count the 
number of stems. Conventional approaches in assessing stem count, such 
as quadratic frame sampling, are time-consuming, challenging, and 
require much physical effort when collecting data in the field, and this 
may hinder the rapid sharing of knowledge in the field (Noland et al., 
2018). Using these methods can pose significant challenges and may be 
impossible in large areas (Kayad et al., 2016). However, remote sensing 
(RS) technology enables the simultaneous and broad observation of 
plant growth with high timeliness and indirect touch.

RS allows non-destructive, efficient, and dynamic plant growth 
monitoring (Cai et al., 2018; Xie et al., 2008). Furthermore, RS tech
nology has significantly contributed to the management of agricultural 
production, particularly in terms of monitoring crop distribution, esti
mating crop yield, assessing the impact of disasters, and other related 
factors (Atzberger, 2013; Meroni et al., 2013; Wang et al., 2023). RS 
systems typically generate a substantial amount of data due to the high 
spatial, spectral, radiometric, and temporal resolutions required for 
precision agriculture applications (Kamilaris et al., 2017). In the era of 
smart agriculture, traditional processing methods are unable to manage 
large data and meet the growing demands effectively (Pokhariyal et al., 
2023). In this regard, machine learning (ML) has become a powerful 
method for effectively obtaining information from various sources.

ML, a subset of artificial intelligence, is a data analysis methodology 
that enables computer systems to automatically identify patterns from 
data without specific programming. Many thorough reviews emphasize 
the use of ML algorithms in agricultural management (Bahrami et al., 
2022b; Chlingaryan et al., 2018; Liakos et al., 2018). ML is a practical 
approach that can offer a more accurate prediction of biochemical and 
biophysical characteristics of different crops (Bahrami et al., 2022a; Van 
Klompenburg et al., 2020). ML algorithms have been applied to predict 
the yield of several crops, including maize (Schwalbert et al., 2018), 
wheat (Zhang et al., 2020), and alfalfa (Feng et al., 2020), and other 
crops.

Previous studies have only focused on proposing alfalfa yield and 
some crop parameter models, most of them in smaller-scale or localized 
settings (Chen et al., 2024; Kayad et al., 2016). For example, Bahrami 
et al., (2025a) utilized Sentinel-2 satellite imagery to estimate alfalfa 
crop height. A few recent studies have utilized satellite or unmanned 
aerial vehicle (UAV)-acquired remote sensing images to build models for 
predicting alfalfa yield (Chandel et al., 2021; Dvorak et al., 2021; Feng 
et al., 2020). Echeverría et al. (2021) utilized Sentinel-2 data to estimate 
alfalfa fractional cover over 172 field sample points. Nevertheless, there 
is a lack of studies to accurately assess the number of alfalfa stems at the 
field, regional, or countrywide levels. Quantifying stem density per unit 
area is a straightforward technique for evaluating the productivity po
tential of an alfalfa crop. Undersander et al. (1998) demonstrated that 

the correlation between stem density and yield potential remains con
stant regardless of the age of the stand. To the best of our knowledge, 
there is only one research (Bahrami et al., 2025b) that has focused on 
alfalfa stem count using remote sensing imagery. However, Bahrami 
et al. (2025b) utilized proximal images, which cannot be applied on a 
large scale.

This research presents a comprehensive and practical framework for 
assessing alfalfa stem density and detecting winter mortality through 
field surveys and satellite data from Sentinel-2 and Harmonized Landsat 
Sentinel (Landsat part only, HLSL30). This study evaluated the potential 
of remote sensing data in estimating alfalfa stem density in four prov
inces in eastern Canada by applying various ML algorithms. The specific 
objectives of this study include: 1) to assess and compare the perfor
mance of vegetation indices and accuracy of various ML models to 
predict the alfalfa stem density and classify them over alfalfa fields 
during different growth stages, study areas, soil types, and topography 
conditions, 2) to use single-date and time-series remote sensing data and 
assess the advantages and disadvantages of each, 3) to generate alfalfa 
stem maps and assess the spatial variability in field productivity using 
potential stem maps, and 4) to provide farmers and decision-makers 
across the country with a precise and straight-forward framework to 
be capable of monitoring their alfalfa field as simple as possible.

2. Materials and methods

2.1. Datasets

2.1.1. Study area and field measurements
Field measurements were conducted on 597 alfalfa fields spread over 

four Canadian provinces—Nova Scotia, Quebec, Ontario, and Man
itoba—using data collected over three years from 2021, 2022, and 2023 
(see Table 1 for field numbers per province). Ground measurements 
included soil samples, stem counts, and crop heights, along with the 
image dataset (Fig. 1).

33 consultants and 192 producers participated in the field cam
paigns. In each field, a randomized design was used. Stem counts were 
taken in the spring and fall at each location, consisting of three data 
points referred to as landmarks (Fig. 2). A rectangular quadrat was used 
to measure the stem counts for each landmark position (Fig. 2). Field 
advisors measured the crop’s height and the number of stems at three 
points in a triangular shape with a side of around two meters at each 
spot. Only alfalfa stems higher than 5 cm were counted. Next, we 
calculated the number of stems for the center of the triangle by taking 
the average of these three ground measurements (Fig. 2). In total, 
22,664 measurements were collected during the three years. After 
calculating the mean values for the center points, 7445 points remained

2.1.2. Remotely sensed data
The satellite dataset used in this research (Sentinel-2 and HLSL30) 

was obtained using the Google Earth Engine (GEE) Python API. GEE (htt 
ps://earthengine.google.com/), launched in 2010 by Google, is a cloud 
computing tool that allows geospatial analysis worldwide utilizing 
Google’s infrastructure (Gorelick et al., 2017). The system consists of a 
multi-petabyte data catalog prepared for analysis, along with a high- 
performance, inherently parallel computing service (Gorelick et al., 
2017). Both Sentinel-2 and HLSL30 data are freely available in GEE.

Table 1 
The number of fields for each year for each province in Canada.

Province Year

2021 2022 2023

Manitoba 46 22 21
Nova Scotia 4 4 4
Ontario 15 9 14
Quebec 532 492 464
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The Sentinel-2 mission comprises two satellites: Sentinel-2A and 
Sentinel-2B. Sentinel-2 is a multispectral sensor that has thirteen bands, 
eight bands in the VNIR spectrum, and five bands in the SWIR range. 
With one satellite, the revisit time is 10 days, and it improves to 5 days 
when utilizing both satellites. The images utilized in this investigation 
were Sentinel-2 Level-2A data, which have undergone atmospheric 
correction and are accessible in GEE. All 10-m and 20-m spatial reso
lution bands were used in this study. Following the Sentinel-2 band 
reflectance extraction, several VIs have been extracted (Table 2).

The Harmonized Landsat and Sentinel-2 (HLS) project is a NASA 
endeavor designed to provide a continuous surface reflectance record 
from the Operational Land Imager (OLI) and Multi-Spectral Instrument 
(MSI) on the Landsat-8/9 and Sentinel-2A/B satellites, respectively. The 

HLS project (Claverie et al., 2017) aims to standardize data from both 
satellite projects to facilitate their integrated utilization. The program 
seeks to eliminate biases between the two sensors regarding varying 
spectral band ranges and viewing geometries, ultimately aiming to 
achieve worldwide land surface coverage at a spatial resolution of 30 m 
with a temporal interval of 2–3 days (Falanga Bolognesi et al., 2020). We 
selected only the Landsat part to compare the results with those from the 
sole Sentinel-2 and determine which sensor better estimates alfalfa 
density. Bands blue, green, red, NIR, SWIR 1 and 2, and TIRS 1 and 2 
were extracted from the HLSL30 data.

Any images of Sentinel-2 and HLSL30 data were extracted within 
three days of the date of ground measurements. No more preprocessing 
was applied to the Sentinel-2 and HLSL30 data downloaded from GEE. A 

Fig. 1. Study area and data collection fields (red rectangles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 2. The details of the protocol used in data collection, 3 sampling spots were placed in the field; measurements were taken within quadrats and placed at the 
corner of each landmark. Please note that the scale has been changed for better visualization.
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threshold of 15 % was used for the maximum allowed cloud coverage 
percentage of the images. Cloud and cloud shadow masking were 
applied to the images. For Sensintel-2, cloudy and/or cloud shadow 
pixels were masked out using the QA60 bitmask and scene classification 
layer (SCL) bands that contain cloud information. For the HLSL30 data, 
cloud and cloud shadow removal was conducted using the Fmask band. 

Since the cloud masking does not remove all cloud and/or cloud shadow 
pixels, the images were checked one by one to ensure the high quality of 
data.

The details of the VIs extracted from Sentinel-2 and HLSL30 utilized 
in this study are shown in Table 2.

Table 2 
The details of the vegetation indices (VIs) used in this study. A symbol (✓) was added to the HLSL30 columns, indicating that the VI could be calculated if the same 
bands are available in the HLSL30 data.

Vegetation Index Formula HLSL30 Ref Abbreviation

Normalized Green Red Vegetation Index Green − Red
Green + Red

✓ (Gitelson et al., 2002) NGRVI

Visible Atmospheric Resistance Index Green − Red
Green + Red − Blue

✓ (Gitelson et al., 2003) VARI

Visible-band Difference Vegetation Index 2Green − Blue − Red
2Green + Blue + Red

✓ (Xiaoqin et al., 2015) VDVI

Green–Red Ratio Index Green
Red

✓ (Gamon and Surfus, 1999) GRRI

Normalized Difference Vegetation Index NIR − Red
NIR + Red

✓ (Rouse et al., 1974) NDVI

Normalized Difference Index 45 Red edge1 − Red
Red edge1 + Red

​ (Delegido et al., 2011) NDI45

Normalized Difference Water Index Green − NIR
Green + NIR

✓ (McFeeters, 1996) NDWI

Normalized Difference Red Edge Red edge4 − Red edge1
Red edge4 + Red edge1

​ (Gitelson and Merzlyak, 
1994)

NDRE

Soil Adjusted Vegetation Index 1.5(NIR − Red)
NIR + Red + 0.5

✓ (Huete, 1988) SAVI

Modified Soil Adjusted Vegetation Index 2NIR + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2NIR + 1)2 − 8(NIR − Red)
√

2

✓ (Qi et al., 1994) MSAVI

Enhanced Vegetation Index 2.5(NIR − Red)
NIR + 6Red − 7.5Blue + 1

✓ (Huete et al., 1997) EVI

Chlorophyll Vegetation Index NIR*Red
Green2

​ (Vincini and Frazzi, 2011) CVI

Simple Ratio NIR
Red

✓ (Jordan, 1969) SR

Optimized Soil Adjusted Vegetation Index NIR − Red
NIR + Red + 0.16

✓ (Qi et al., 1994) OSAVI

Modified Chlorophyll Absorption in Reflectance 
Index

(Red edge1 − Red) − 0.2*(Red edge1 − Green)*(Red edge1 − Red) ✓ (Daughtry et al., 2000) MCARI

Inverted Red-Edge Chlorophyll Index Red edge3 − Red
Red edge1/Red edge2

​ (Frampton et al., 2013) IRECI

Blue: Band 2 in Sentinel-2 and HLSL30; Green: Band 3 in Sentinel-2 and HLSL30; Red: Band 4 in Sentinel-2 and HLSL30; NIR: Band 8 in Sentinel-2 and Band 5 in 
HLSL30; Red_edge1: Band5 in Sentinel-2; Red_edge2: Band6 in Sentinel-2; Red_edge3: Band7 in Sentinel-2; Red_edge4: Band8A in Sentinel-2.

Fig. 3. The flowchart of the proposed methodology in this study.
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2.2. General workflow

We utilized various ML regression and classification algorithms, 1) 
classification to classify stem densities into different classes, from bare to 
high-density, and 2) regression to estimate the stem density values. 
Although the stem density is a continuous value and regression is more 
suitable in this case, the rationale behind training classification models 
was to assess how the model performs across different classes. Two 
scenarios were considered to estimate/classify stem densities and detect 
winter mortality. In the first scenario, single-date remote sensing images 
within a 3-day time window of the ground measurement date were 
gathered for each of the alfalfa stem measurements during all growing 
cycles, and VIS were then calculated (Fig. 3). If there were no satellite 
measurements within a 3-day time window of the ground measurement 
date, or cloud and cloud shadows affected the area close to the sampling 
location, that measurement was eliminated.

After preprocessing and according to the timeline we considered, 
2052 and 1747 samples were available for the Sentinel-2 and HLSL30 
data, respectively, for the single-date scenario. To eliminate any po
tential inaccuracies in the data, we used the Python CleanLab package 
(Zhou et al., 2023). This package assists in cleaning data and labels by 
automatically identifying problems in an ML dataset. The Sentinel-2 and 
HLSL30 datasets had 1692 and 1528 points remaining, respectively, 
after applying CleanLab.

Based on agronomic guidelines (Undersander et al., 1998), stem 
densities are divided into three categories: 1) Alfalfa yield will diminish 
if the plant density falls below 40 stems/foot2, 2) A stem count between 
40 and 55 stems/foot2 produces a maximum yield, and 3) A stem count 
higher than 55 has no effect on production (Undersander et al., 1998). 
We consequently split the stem counts into four classes for the classifi
cation models: 1) bare (count < 5 stems/foot2), 2) low-density (5 <
count < 35 stems/foot2), 3) medium-density (35 < count < 55 stems/ 
foot2), and 4) high-density (count ≥ 55 stems/foot2).

The cleaned datasets were then split into training and validation sets. 
For regression models, stratification was performed by year to ensure 
temporal balance: 70 % of the data from each year were allocated to the 
training set, while the remaining 30 % were reserved for validation. For 
classification tasks, the data were stratified based on class labels to 
maintain class balance across splits. This resulted in 1184 training and 
508 validation samples for Sentinel-2, and 1069 training and 459 vali
dation samples for HLSL30.

Fig. 4 depicts the histogram representing the distribution of ground 
measurements for the stem count value using Sentinel-2 data in the first 
scenario.

In the second scenario, satellite measurements were extracted at the 

beginning, middle, and end of the first growing cycle. This is because the 
number of stems typically does not change throughout a single growing 
cycle. As previously mentioned, alfalfa is typically cut multiple times 
annually. Consequently, the term “first growing cycle” refers to the 
period from the beginning of the growing season in the spring to the first 
harvest. All in-situ measurements with at least three satellite measure
ments during the first growing cycle were considered. For each satellite 
measurement, all 10-m and 20-m spatial resolution bands, along with 
the VIs listed in Table 2, were extracted. The time-series data were 
subsequently fed into ML models to estimate and categorize the number 
of stems. Only Sentinel-2 multispectral data were used in this scenario, 
as the temporal resolution of HLSL30 in GEE data did not adequately 
cover the timeframe considered in this scenario. In total, 1803 in-situ 
measurements were available. After checking the satellite images and 
their corresponding dates one by one, 409 points were eliminated due to 
the potential presence of clouds and/or cloud shadows, or the date of 
availability of the satellite images was biased. In total, 1389 in-situ 
measurements were available; however, after applying the CleanLab, 
847 points remained. Like the first scenario, the second scenario used 
the same stratifying technique to split the data: 70 % of the data was 
chosen for training, while 30 % was randomly selected for validation. 
For training and validation, 592 and 255 samples were available in the 
second scenario, respectively.

The importance of each feature has also been analyzed in this sce
nario. This allowed for defining the most informative features to assess 
alfalfa stem count. The parameters of each ML method were tuned using 
GridSearch cross-validation (GridSearchCV). Scikit-learn (Pedregosa 
et al., 2011) has an existing function called GridSearchCV. Finding the 
ideal values for the parameters in each model involves fine-tuning the 
model’s hyperparameters using GridSearchCV. A cross-validation value 
of 5 has been used for this study. This means that 5-fold cross-validation 
is what we are utilizing for training. Five equal—or nearly equal—parts 
are randomly selected from the dataset. Four parts are used to train the 
model, while the remaining part is used for testing. Five times through 
this process, a different part is employed as the test set each time.

2.3. Machine learning methods

2.3.1. Random forests
Random Forests (RF) are ensemble learning models developed by 

Breiman (2001) utilized for classification and regression tasks. Ensemble 
methods employ several learning mechanisms to enhance performance. 
Boosting and bagging are the major ensemble learning techniques. 
Boosting involves creating a sequence of models, wherein each model 
aims to fix the errors of the previous one. Multiple base models are 

Fig. 4. The histogram of the stem count data in the training data (left) and validation data (right). (SC = Stem Count).
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independently fitted during the bagging process, resulting in a more 
stable composite model with reduced variance. In RF, which is a suc
cessful bagging ensemble approach, a collection of estimators is inte
grated to provide a more precise model. The RF algorithm mitigates 
model variance by averaging the outputs of all decision trees (Dangeti, 
2017). The details of the grid parameters used in this study for RF tuning 
are shown in Table 3.

2.3.2. Support vector machine
The Support Vector Machine (SVM) model was introduced by Cortes 

and Vapnik (1995). It is a robust and extensively utilized kernel-based 
ML algorithm for classification tasks. The SVM model can be adapted 
for regression problems (Awad et al., 2015). In SVR, the objective is to 
find a function f(x) that deviates from the targets by no more than 
epsilon. A flexible tube is constructed around the estimation function by 
employing SVR, thereby disregarding absolute error amounts that fall 
below a predetermined threshold. Points within the tube, whether above 
or below the prediction function, suffer no penalties, whereas points 
outside the tube are subject to penalties. The details of the grid pa
rameters used in this study for SVM tuning can be seen in Table 4.

2.3.3. Extreme gradient boosting
XGB (Brownlee, 2016) is a widely utilized implementation of 

gradient boosting, initially created by Tianqi Chen in 2001 as a research 
work. The approach utilizes a gradient-boosting architecture and func
tions as an ensemble machine-learning algorithm. XGB improved a 
machine learning model’s performance, speed, adaptability, and effi
ciency. Table 5 shows the GridSearch parameters utilized for tuning the 
XGB hyperparameters.

2.4. Accuracy assessment

Confusion matrices are insightful and detailed techniques to assess 
the performance of classification algorithms (Sathyanarayanan and 
Tantri, 2024). A confusion matrix is a two-by-two table that indicates 
the counts of true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN).

The recall metric evaluates how well the model can identify positive 
samples, making detecting and correcting any overlooked positive 
samples crucial. Recall is computed according to (Equation (1). A high 
recall indicates that the model has a strong ability to recognize positive 
instances accurately. The precision of a model is defined by its positive 
detection accuracy and is calculated using Equation (2). High precision 
means that the model has a limited frequency of false positives. The F1- 
score (Equation (3) is a harmonic mean of recall and precision, which is 
valuable for considering both false positives and false negatives. Finally, 
accuracy is a metric that quantifies the proportion of accurately iden
tified instances within the entire dataset, computed as per Equation (4). 

Recall =
TP

TP + FN
(1) 

Precision =
FP

TP + FP
(2) 

F1 − score = 2*
Precision*Recall

Precision + Recall
=

2*TP
2*TP + FP + FN

(3) 

Accuracy =
TP + TN

TP + FP + TN + FN
(4) 

For regression models, several criteria, including root mean square error 
(RMSE), mean absolute error (MAE), and coefficient of determination 
(R2), were used in this study to evaluate the performance of each ma
chine learning model, calculated respectively in Equations (5), 6, and 7): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(5) 

MAE =

∑n
i=1|ŷi − yi|

n
(6) 

R2 = 1 −

∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − y)2 (7) 

where ŷi and yi are respectively the observed and estimated ith value, 
and n is the number of observations.

RMSE offers a measurable evaluation of the distance value, i.e., the 
difference between the observed and estimated values. The use of 
squared values makes RMSE sensitive to outliers. We also used MAE, 
which is less sensitive to extreme values, making it useful when pursuing 
an indicator that is less vulnerable to outliers. Finally, R2 measures trend 
agreement, i.e., evaluating whether the estimated variable values in
crease with those observed and vice versa.

3. Results

3.1. Single-date stem count

3.1.1. Feature importance
Fig. 5 illustrates the feature importance results for RF and XGB using 

Sentinel-2 data. NDVI and OSAVI hold the highest RF and XGB feature 
importance positions, respectively. The results indicate that the 
normalized difference of the red, NIR, and red edge bands yields greater 
importance. VDVI ranks third among the important features for both RF 
and XGB, indicating that an index utilizing solely RGB bands can be 
crucial.

XGB feature importance results, like RF feature importance, indicate 
that NDVI, OSAVI, and VDVI are the most important among all the VIs 
and bands using Sentinel-2 data. In XGB feature importance, NDI45 and 

Table 3 
The detail of the RF parameters optimized in this study using GridSearchCV.

Parameters Description Grid Search 
Values

n_estimators Number of trees in the forest 10, 30, 50, 100
max_depth Maximum depth of the trees 3, 4, 5, 6
max_features The number of features to consider when looking 

for the best split
3, 5, 10

Table 4 
The details of the SVM parameters optimized in this study using GridSearchCV.

Parameters Description Grid Search Values

Kernel type of kernel that the algorithm employs. ’rbf’, ’poly,’ ’linear’
Gamma Kernel coefficient for ‘rbf’, ‘poly’, and 

‘sigmoid.’
0.0001, 0.001, 0.05, 
0.01, 0.05, 0.1, 0.5

C Penalty parameter 1, 10, 50, 100, 200
Degree The polynomial kernel function’s degree 2, 3, 4
epsilon Specifies the epsilon-tube within which no 

penalty for the points predicted within a 
distance epsilon from the actual value

0.05, 0.1, 0.2, 0.3, 0.5

Table 5 
The details of XGB parameters optimized in this study using GridSearchCV.

Parameters Description Grid Search Values

learning_rate Shrinks the contribution of each 
tree

0.001, 0.05, 0.01, 0.1, 0.2, 
0.3, 0.5

n_estimators The number of boosting stages to 
conduct.

10, 30, 50, 100

max_depth Limits the number of nodes in the 
tree.

3, 4, 5, 7, 10
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B4 are ranked third and fourth, indicating that RGB VIs significantly 
contribute to the XGB model.

For HLSL30 data, NDVI and OSAVI had the highest ranks of feature 
importance for both RF and XGB, similar to the results obtained with 
Sentinel-2 data (Fig. 6). SAVI, NDWI, and EVI ranked next in RF, while 
NGRVI, VARI, and OSAVI ranked next in XGB.

3.1.2. Performance evaluation of alfalfa stem density classification
The results of ML algorithms to estimate the stem classes using 

Sentinel-2 data are shown in Table 6. RF achieved 89 % accuracy on the 
training dataset, while XGB and SVM reached 87 % and 85 % accuracy, 
respectively. RF has the highest accuracy for validation data, achieving 
an overall accuracy of 85 %. XGB and SVM ranked second and third, 
with an overall accuracy of 84 % and 83 % for the validation data, 
respectively.

Fig. 5. The chart of feature importance using RF (blue) and XGB (red) using Sentinel-2 data. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 6. The chart of feature importance using RF (blue) and XGB (red), using HLSL30 data. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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In the bare class, all models showed great potential in accurately 
classifying the classes compared to other classes in training and vali
dation datasets. RF showed the highest accuracy in terms of F1–score, 
with values of 99 % for the validation dataset. For the low-density class, 
the F1-score for the training data was 93 %, but it was 89 % for the 
validation data. In the high-density class, the F1-score for the training 
data in RF surpassed that of XGB and SVM, although the validation F1- 
score for all models was 83 %. Based on the comparison between 
training and validation evaluation metrics, there is no sign of overfitting 
in any of the ML models used in this study utilizing Sentinel-2 data.

For the HLSL30 dataset, RF and XGB performed the best in the 
validation data in terms of overall accuracy (Table 7). The accuracy for 
the validation data was 84 % in RF and XGB, whereas it was 79 % in 
SVM. In the training data, the XGB model outperformed the other two 
models, achieving an overall accuracy of 100 % over all classes. This 
demonstrates that the XGB model has been overfitted to the training 
data. XGB outperformed the other two models for all classes in terms of 
F1-score over the validation dataset. The SVM model had the lowest 
rank in terms of overall accuracy in both the training and validation 
datasets.

All ML models demonstrated remarkable accuracy in classifying stem 
classes. The RF demonstrated slightly higher accuracy for both the 
HLSL30 and Sentinel-2 datasets. XGB held the second position, while 
SVM occupied the final place.

Fig. 7 displays the normalized confusion matrix by row for the 
validation datasets for Sentinel-2 (left column) and HLSL30 (right col
umn) datasets. Minimal confusion is observed between bare and low- 
density classes, indicating a limited number of samples originally cate
gorized as bare that were misclassified as low-density or vice versa. The 

most significant confusion across nearly all models was observed be
tween the medium-density and high-density classes. Analysis of HLSL30 
data revealed that the high-density class was identified with a higher 
accuracy; however, the utilization of Sentinel-2 data indicated that the 
medium-density class was classified with higher accuracy. The most 
significant confusion arises among pixels labeled as medium-density, 
which the model erroneously categorized as high-density across all 
models.

3.1.3. Performance evaluation of alfalfa stem density estimation
Fig. 8 depicts the results of different ML regression algorithms on 

validation data using Sentinel-2 data on the left and HLSL30 data on the 
right. The accuracy of RF and XGB for the validation data using Sentinel- 
2 was approximately similar. The R2 value for both RF and XGB was 
0.89. RF and XGB slightly surpassed SVR using Sentinel-2 data. Using 
the Sentinel-2 dataset, the value of RMSE for RF (7.83 stems/foot2) was 
slightly better than those for XGB (7.88 stems/foot2) and SVR (8.66 
stems/foot2). However, the value of MAE with XGB (6.03 stems/ft2) was 
lower than those obtained with RF (6.06 stems/foot2) and SVR (6.93 
stems/foot2). The SVR, however, had a lower R2 (R2 of 0.83) compared 
to RF and XGB. RF slightly outperformed XGB in terms of RMSE and 
MAE. Saturation in SVR can be seen in values above ~ 75 stems in 
Sentinel-2, while the saturation value is higher in RF and XGB.

Utilizing the HLSL30 dataset, like the Sentinel-2 dataset, RF and XGB 
had the same R2 value (R2 of 0.89). SVR ranked third with an R2 value of 
0.83. The MAE for XGB was approximately six stems. RF and XGB 
demonstrated superior performance using HLSL30 while analyzing 
validation data. Saturation in HLSL30 data becomes increasingly 
apparent as the values approach approximately 80 stems. SVR showed 

Table 6 
Evaluation metrics of the ML algorithms in estimating the number of stems using single-date Sentinel-2 data.

Sentinel-2

RF XGB SVM

Training Validation Training Validation Training Validation

Bare Precision 0.99 0.97 0.99 0.96 0.97 0.93
Recall 0.96 1.00 0.96 1.00 0.96 1.00
F1-score 0.98 0.99 0.97 0.98 0.97 0.96

Low-density Precision 0.96 0.91 0.94 0.90 0.95 0.93
Recall 0.91 0.87 0.90 0.85 0.87 0.81
F1-score 0.93 0.89 0.92 0.88 0.91 0.86

Medium-density Precision 0.75 0.69 0.73 0.68 0.72 0.67
Recall 0.90 0.81 0.88 0.83 0.81 0.79
F1-score 0.82 0.75 0.80 0.75 0.76 0.73

High-density Precision 0.92 0.90 0.91 0.93 0.83 0.85
Recall 0.80 0.77 0.77 0.74 0.83 0.81
F1-score 0.86 0.83 0.83 0.83 0.83 0.83

Total Accuracy 0.89 0.85 0.87 0.84 0.85 0.83

Table 7 
The results of various ML algorithms in estimating the number of stems using single-date HLSL30 data.

HLSL30

RF XGB SVM

Training Validation Training Validation Training Validation

Bare Precision 0.94 0.93 1.00 0.94 0.96 0.92
Recall 0.93 0.92 1.00 0.95 0.94 0.90
F1-score 0.93 0.93 1.00 0.94 0.95 0.91

Low-density Precision 0.86 0.87 1.00 0.89 0.85 0.85
Recall 0.92 0.90 1.00 0.88 0.91 0.90
F1-score 0.89 0.88 1.00 0.89 0.88 0.88

Medium-density Precision 0.80 0.75 1.00 0.74 0.76 0.70
Recall 0.70 0.74 1.00 0.76 0.66 0.61
F1-score 0.75 0.75 1.00 0.75 0.71 0.65

High-density Precision 0.83 0.84 1.00 0.83 0.81 0.73
Recall 0.87 0.81 1.00 0.82 0.86 0.78
F1-score 0.85 0.82 1.00 0.83 0.83 0.76

Total Accuracy 0.85 0.84 1.00 0.84 0.83 0.79
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Fig. 7. The confusion matrices of validation data using Sentinel 2 data (left column) and HLSL30 data (right column) using RF, XGB, and SVM.
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unusual behaviors in the sparse and low-density alfalfa region. The 
negative numbers estimated by SVR may result from normalization, as 
normalization was performed solely on the training data.

3.1.4. Stem count and stem class mapping
Fig. 9 shows the mapping of stems using both single-date regression 

and classification models. Using the RF regression and classification 
model, we acquired Sentinel-2 data from GEE due to its resolution and 
predicted the number of stems and stem classes on various dates. Three 
images that were taken before the harvest were utilized for mapping 
analysis. The findings indicated that the models may effectively project 
alfalfa distribution in future circumstances. As it is shown in Fig. 9-a and 

Fig. 8. The scatterplots between estimation and observation of various ML regression algorithms to estimate stem count on validation data using Sentinel-2 (left 
column) and HLSL30 (right column) data.
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-b, the quantity of stems remained relatively stable at the end of the first 
and the second growing cycles. Nonetheless, the mapping of stem 
quantities indicated a reduction of high-density class (more than 55 
stems in the regression) during the third growing cycle (Fig. 9-c). Using 
this model, if a pixel is classified as bare in the classification model or the 
value of the regression model is close to zero, that location must be 
considered winter mortality, as the stem density does not satisfy yield 
potential.

3.2. Time-series stem count

3.2.1. Performance analysis of classifying and estimating alfalfa stem 
density

Like the results with single-date data, the RF outperformed other 
models in regression (Fig. 10). RF enabled the estimation of stems by 
utilizing three satellite images per point, achieving an RMSE of ~ 10 
stems. The results indicated that employing RF and XGB for classifica
tion may predict the stem classes with approximately 82 % overall ac
curacy in the validation dataset. The SVM exhibited lower overall 
accuracy compared to RF and XGB, with an overall accuracy of 80 %. 

Fig. 9. Comparison of RGB images, stem class predictions, and stem count estimations for three dates: (a) May 27, 2023, (b) June 21, 2023, and (c) September 24, 
2023. Each row corresponds to a specific date, with columns showing RGB images (left), stem class predictions (center), and stem count estimations (right).
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Fig. 10. The scatterplots between estimation and observation validation data using multi-temporal data (left column), and confusion matrix of validation data (right 
column) using Sentinel-2 data and XGB model.
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Despite SVM exhibiting relatively high performance, having a few 
misclassified samples between medium- and high-density classes, its 
performance distinguishing the bare class from low-density and low- 
density from medium-density was lower. Despite the presence of mis
classified pixels among classes in the classification models, these pixels 
probably fall around the threshold values. In regression models, nearly 
all exhibited comparable performance on the validation data, with an 
MAE of approximately eight stems. The R2 score for XGB was 0.81, 
whereas it was 0.82 for SVR and 0.83 for RF. RF somewhat surpassed 

other models regarding RMSE and MAE, as the RMSE and MAE were 
9.69 stems/foot2 and 7.94 stems/foot2 for RF, respectively, while they 
were 10.29 stems/foot2 and 8.30 stems/foot2 for XGB and 9.97 stems/ 
foot2 and 8.19 stems/foot2 for SVR. All models show some saturation in 
the stem values of higher than ~ 80.

3.2.2. Stem count and stem class mapping using Time-Series data
Three different fields were selected for this section of the research. 

Three images for each field during the first growing cycle were collected 

Fig. 11. Comparison of Sentinel-2 imagery, stem class classification, and stem count regression results for three different dates. Each row corresponds to a specific 
Sentinel-2 acquisition date (a: acquired on May 25, 2023; b: on May 30, 2023; and c: on May 27, 2023) with the Sentinel-2 RGB image (left), the stem class mapping 
from a classification model using multi-temporal data (center), and the estimated stem count per unit area from a regression model (right).
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and fed into the ML algorithms. We quantified and classified the number 
of stems using the RF regression and classification models. As depicted 
in Fig. 10, the results indicated that the model’s predictions closely 
matched the RGB images taken right before the first harvest. Also, the 
results indicated that the classification prediction of stem density closely 
matched the regression estimates. In this scenario, like the previous 
scenario, the maps can be utilized to detect winter mortality in the 
spring and to estimate the number of stems for the potential yield cal
culations. If a pixel is classified into the bare class in the classification 
model or close to zero in the regression, that location must be considered 
winter mortality as the stem density is low and does not satisfy yield 
potential. See (Fig. 11).

4. Discussion

Using satellite remote sensing data, this study proposed a robust and 
practical framework to count the number of alfalfa stems and detect 
winter mortality early in the season in four provinces in eastern Canada, 
including Quebec, Ontario, Manitoba, and Nova Scotia. We assessed the 
viability of Sentinel-2 and HLSL30 spectral bands and vegetation indices 
for estimating stem count variability in alfalfa fields using GEE. The 
performances of RF, SVM, and XGB ML algorithms for stem count and 
winter mortality detection were assessed and compared. The results 
showed that RF has great potential in estimating alfalfa stem density 
and, therefore, detecting winter mortality using remote sensing data.

Although there is a lack of research on estimating the alfalfa stem 
density using satellite data and ML algorithms, several studies have 
demonstrated the great potential of RF in predicting the crop biophysical 
parameters of other crops (Bahrami et al., 2022a; Bahrami et al., 2021; 
Kganyago et al., 2024; Kganyago et al., 2021). Bahrami et al. (2025b)
estimated the number of alfalfa stems using proximal iPad images. They 
reported an RMSE of about 10 stems in their study. However, we ach
ieved a higher MAE value of about 6–9 stems in our study. Additionally, 
it is impossible or difficult to apply proximal images on large-scale 
mapping. This study also evaluated the importance of each feature in 
the examined models. Our results indicated that NDVI was the most 
important feature in alfalfa stem density estimation. In a review study by 
Tedesco et al. (2022), NDVI was among the high-potential and highly 
used vegetation indices in alfalfa crop parameter estimation.

The findings indicated that both Sentinel-2 and HLS data have sig
nificant potential for estimating the intra-field variations of the number 
of stems. In various studies, the high potential of Sentinel-2 and HLS 
data in estimating biophysical parameters of multiple crops has been 
acknowledged (Dong et al., 2020; Kganyago et al., 2021; Qiao et al., 
2024; Xu et al., 2025).

Given that a crucial purpose was to identify winter damage areas for 
farmers, the different scenarios were utilized to provide essential in
formation. In one scenario, satellite images at various growing stages 
were employed to develop alfalfa stem count inversion models. This 
scenario can be applied as soon as the satellite image is available. 
Therefore, we can provide stem count maps once the satellite image is 
available, and thus avoid losing time. However, this approach yields 
varying stem counts for each satellite image, as it highly relies on the 
reflectance of various bands and vegetation indices. For example, two 
satellite images with only two- or three-day differences may result in 
different stem count maps since the reflectance in different bands in 
these two images differs. This causes problems as the number of stems 
remains constant during each growing period. Consequently, we cannot 
determine the optimal timing to utilize the model. The first scenario is 
practical for the early detection of dead areas in spring. This way, we 
may monitor the fields over time, and if a pixel consistently exhibits a 
low stem count, it indicates an issue at that particular area on the 
ground. Therefore, the model can warn the farmers and inform them of 
the exact location of potential dead or damaged areas in the early spring.

In an alternative scenario, we examined time-series satellite data. 
Three Sentinel-2 measurements have been considered for each sampling 

point in the first growing cycle. By extracting reflectance and vegetation 
indices and considering the consistency of stem count, we developed 
different ML models to predict the number of stems. RF showed signif
icant capability in quantifying stem counts for time-series data. This 
model enables farmers to detect winter mortality early in spring, before 
the first harvest, and provides an accurate estimation of the number of 
stems, facilitating potential yield estimation. The sole limitation of this 
model is that it requires a minimum of three satellite images to generate 
its final assessment.

The results of this study indicate the potential for stem count esti
mates in alfalfa fields, which might help a deeper comprehension of 
yield distribution at the pixel level through remote sensing measure
ments. Based on a study by Dan Undersander et al. (2011), there is a 
linear relationship between the number of stems per square foot and the 
potential dry matter yield. Consequently, when the stem count for each 
pixel is provided, the potential total dry matter yield for each field can 
be calculated. We referred to potential dry matter, as the actual dry 
matter is dependent upon several factors, including weather, fertility, 
and drought, among others. Furthermore, stem count serves as a signal 
for farmers to determine whether to rotate their alfalfa fields.

The results of this study demonstrated slight saturation in the stem 
count models, especially for stem counts exceeding ~ 80. This may be 
attributed to either the saturation of VIs or the insufficient number of 
samples over 80 stems per foot. The problem of saturation of the vege
tation index produces deviations in crop parameter estimation, such as 
LAI and yield estimation, and it has been widely stated in the literature 
(Gao et al., 2023; Wang et al., 2022). However, based on the literature, 
the alfalfa yield is not significantly affected by stem density exceeding ~ 
55 stems/foot2 (Maxime Leduc, 2019). Furthermore, as previously 
stated, a stem count exceeding 55 is regarded as highly dense, and this 
threshold does not necessitate crop rotation by the farmers. Conse
quently, this saturation will not constrain our models.

4.1. Limitations and future work

In this study, the Landsat part of the HLS data has only been used. 
Using both sensors could be of great importance in future work. The only 
setback of the HLS data is its coarse resolution. However, the temporal 
resolution can offer rich data since the temporal resolution could reach 
~ 2 to 3 days, which would be a great asset, especially in Canada, where 
the growing cycles of alfalfa are relatively short. In that case, we would 
have more measurements, and the models would be more reliable. 
Having high temporal resolution data enables us to utilize other state-of- 
the-art models, such as the long short-term memory (LSTM) model, 
which can be more accurate than conventional ML models.

As mentioned in Section 2.2, a high number of the measurements 
were labeled as low quality, especially in the second scenario. This can 
be attributed to the low spatial or temporal resolution of the data, as we 
assume that the density of the entire pixel is the same as the average 
density at a ground measurement point. To overcome this, future studies 
may benefit from utilizing satellite imagery with higher spatial and 
temporal resolution, such as SuperDove data from the PlanetScope 
constellation.

Besides, as mentioned earlier, we utilized all bands and VIs in this 
study. This may be complex and increase the processing time for future 
cases, especially when the scale is regional and national. It will be even 
more computationally expensive if users want to use the time-series 
model, since it needs a total of 78 features. Therefore, feature engi
neering is of great importance for future work.

The trained models did not go through validation and verification 
outside of Canada or in eastern Canada. Collaboration with researchers 
within Canada and worldwide would be advantageous, provided they 
had reliable ground measurements to ensure the models work effectively 
across various study sites and crop circumstances.
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5. Conclusion

The study illustrated the significant potential of Sentinel-2 and 
HLSL30 optical data and machine learning methods as a precise, prac
tical, and cost-effective tool for automated stem counting and winter 
mortality detection. Two scenarios were assessed for training the ma
chine learning models: 1) utilizing single-date remote sensing data and 
2) employing time-series data. For the single-date stem count, the closest 
satellite data for the ground samples during the growing season were 
considered, while for the time-series data, three satellite measurements 
were utilized. Various ML classification and regression models have 
been trained over the ground-truth data. Classification models classified 
stem density into four categories (bare, low-density, medium-density, 
and high-density), achieving a maximum accuracy of 85 % with 
Sentinel-2 data and 84 % with HLSL30 data. The regression findings 
indicated that alfalfa stem density can be approximated with an error of 
approximately ± 6–9 stems/foot2. The RF machine learning model 
demonstrated significant proficiency in estimating and classifying stem 
counts utilizing Sentinel-2 and HLSL30 datasets in both scenarios. Our 
findings also indicated that the NDVI and OSAVI were the most 
important features for alfalfa stem count analysis.
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