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A B S T R A C T

Among various types of forages, Alfalfa (Medicago sativa) is a crucial forage crop that plays a vital role in 
livestock nutrition and sustainable agriculture. As a result of its ability to adapt to different weather conditions 
and its high nitrogen fixation capability, this crop produces high-quality forage that contains between 15 and 22 
% protein. It is fortunately possible to improve the overall prediction of forage biomass and quality prior to 
harvest through remote sensing technologies. The recent advent of deep Convolution Neural Networks (deep 
CNNs) enables researchers to utilize these incredible algorithms. This study aims to build a model to count the 
number of alfalfa stems from proximal images. To this end, we first utilized a deep CNN encoder-decoder to 
segment alfalfa and other background objects in a field, such as soil and grass. Subsequently, we employed the 
alfalfa cover fractions derived from the proximal images to develop and train machine learning regression models 
for estimating the stem count in the images. This study uses many proximal images taken from significant 
number of fields in four provinces of Canada over three consecutive years. A combination of real and synthetic 
images has been utilized to feed the deep neural network encoder-decoder. This study gathered roughly 3447 
alfalfa images, 5332 grass images, and 9241 background images for training the encoder-decoder model. With 
data augmentation, we prepared about 60,000 annotated images of alfalfa fields containing alfalfa, grass, and 
background utilizing a pre-trained model in less than an hour. Several convolutional neural network encoder- 
decoder models have also been utilized in this study. Simple U-Net, Attention U-Net (Att U-Net), and ResU- 
Net with attention gates have been trained to detect alfalfa and differentiate it from other objects. The best 
Intersections over Union (IoU) for simple U-Net classes were 0.98, 0.93, and 0.80 for background, alfalfa and 
grass, respectively. Simple U-Net with synthetic data provides a promising result over unseen real images and 
requires an RGB iPad image for field-specific alfalfa detection. It was also observed that simple U-Net has slightly 
better accuracy than attention U-Net and attention ResU-Net. Finally, we built regression models between the 
alfalfa cover fraction in the original images taken by iPad, and the mean alfalfa stems per square foot. Random 
forest (RF), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGB) methods have been utilized 
to estimate the number of stems in the images. RF was the best model for estimating the number of alfalfa stems 
relative to other machine learning algorithms, with a coefficient of determination (R2) of 0.82, root-mean-square 
error of 13.00, and mean absolute error of 10.07.

1. Introduction

One of the most widespread biomes on Earth is grassland (31–69 % 
of global land surface). Grasslands are essential for global food security 
and provide several ecological services, such as erosion control, water 
harvesting, wildlife habitat support, and carbon sequestration (Squires 

et al., 2018). Some of the most significant components of the human diet 
or animal feed are grain and forage legumes (Vance et al., 2000). In 
recent years, precision agriculture has been developed and refined, 
increasing the use of advanced technology and previously untested 
systems to manage livestock more effectively (Wachendorf et al., 2018). 
Forage is vital to the livestock industry as a primary source of animal 
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nutrition. Monitoring the quality and availability of forage resources, 
particularly alfalfa, is crucial for ensuring optimal animal health and 
productivity. Agricultural producers can make informed decisions 
regarding grazing management, feed supplementation, and overall herd 
health by regularly assessing forage quantity and nutritional content.

Compared to other forage crops, alfalfa has an exceptionally high 
yield potential (Aldakheel et al., 2004). It is recognized that alfalfa or 
lucerne (Medicago sativa) is one of the most significant forage legumes 
(Fabaceae) and the most widely cultivated crop (over 80 countries) 
among forage legumes, covering an area of 35 million hectares (Kayad 
et al., 2016). Alfalfa is a temperate perennial crop typically grown in 
arid and semi-arid areas. Its well-developed root system can extend deep 
into the soil to obtain water (Quan et al., 2016). Due to its ability to fix 
atmospheric nitrogen, improve soil structure, and control weeds, alfalfa 
is an essential component of many crop rotations (Aldakheel et al., 
2004). A study of crop parameters and yields conducted by Bahrami 
et al. (2022) has shown that alfalfa ranks seventh among the ten most 
frequently studied crops regarding biophysical parameters such as 
biomass and leaf area index (LAI). There is no doubt that one of the most 
considerable challenges to alfalfa production is weeds, given that these 
species compete with alfalfa for nutrients, space, sunlight, and water 
(Yang et al., 2022). They also reduce forage yield and nutritional value 
(Yang et al., 2022).

Alfalfa can be cut several times yearly and regrow quickly after each 
harvest (Gao and Zhang, 2021). As a result of climate conditions directly 
affecting the severity of environmental stresses and indirectly modu
lating plant hardiness, perennial crops such as alfalfa are more likely to 
survive the winter (McKenzie and McLean, 1980a, b; Suzuki, 1972). 
Various factors can lead to winter damage, including subfreezing and 
fluctuating temperatures, excessive soil moisture, ice encasement, and 
soil heaving (Andrews, 1987; Bélanger et al., 2006). In many forage- 
growing regions of Canada and other cold temperate countries, harsh 
winter climates cause frequent losses of stands and yield reductions 
(Bélanger et al., 2006). If this injury is evaluated early in the growing 
season, crop replacement decisions can be made more efficiently. Sparse 
or elderly stands may lack the yield capacity to produce sufficient yields 
in future cuts. In order to evaluate annual stem mortality, it becomes 
essential to assess the extent of damage caused by these environmental 
stresses using monitoring techniques. Stem counts offer a more precise 
assessment of yield potential compared to plant counts.

Stem counts also provides valuable insights into stand density, plant 
vigor, and potential yield, enabling farmers to make informed decisions 
regarding irrigation, fertilization, and harvest timing (David et al., 
2021). Accurate estimation of stem counts plays a vital role in better 
crop yield projections and in monitoring the growth and development of 
crops (Dias et al., 2018). Yield estimation can be carried out automati
cally by counting the number of plants or tracking their growth (Hunt 
et al., 2010). Moreover, stem count is a crucial indicator of crop pro
ductivity, helping farmers and decision-makers optimize forage utili
zation and improve overall field performance (Dias et al., 2018). Current 
breeding programs typically assess plant density manually. Since this 
process is tedious, time-consuming, and expensive, operators count 
plants in the field over a limited area (David et al., 2021; Fernandez- 
Gallego et al., 2020). Several uncertainties and possible errors usually 
accompany the operators’ sub-sampling methods (David et al., 2021; 
Fernandez-Gallego et al., 2020; Liu et al., 2016).

Nowadays, monitoring crop parameters such as yield, biomass, 
fractional vegetation cover, and other parameters is achievable at the 
field scale thanks to advances in remote sensing and ground- and 
mobile-based sensors (Hancock and Dougherty, 2007). Spectral-based 
remote sensing techniques mainly rely upon a crop’s unique absorp
tion and scattering characteristics, i.e., its spectral signature. In the 
visible range of the electromagnetic spectrum, absorption occurs at red 
and blue wavelengths (around 670 nm and 450 nm, respectively) and 
scatters in the green band (530–590 nm), resulting from the presence of 
chlorophyll and accessory photosynthetic pigments in plant leaves 

(Marshall and Thenkabail, 2015). There is wide variation in the accu
racy of remote sensing methods, which is determined primarily by the 
modelers’ ability to collect and scale up ground measurements for model 
calibration and validation (Lu, 2006). In-field estimation of the number 
of stems and other crop parameters, such as yield and biomass, let 
decision-makers better manage and organize forage production (Noland 
et al., 2018). Although the cost of in-situ spectral measurement tech
nologies is comparatively high with higher spectral resolution and better 
resolution of contemporary systems, one of the best methods that can aid 
farmers and decision-makers in achieving rapid and direct assessments 
of a crop at field scales is remote sensing of canopy reflectance (Noland 
et al., 2018).

Several studies have focused on the use of various remote-sensing 
platforms, including ground-based sensors (Garriga et al., 2020; Han
cock and Dougherty, 2007; Marshall and Thenkabail, 2015), aerial ve
hicles (Cazenave et al., 2019; Feng et al., 2020), and satellites 
(Azadbakht et al., 2022; Kayad et al., 2016), to assess alfalfa production. 
Li et al. (2023) examined the ability of several remote sensing images’ 
reflectance and the vegetation indices derived from the bands to esti
mate the biomass and yield of alfalfa. In order to achieve this objective, 
they employed the MODIS surface reflectance product and Sentinel-2 
Level2-A satellite imagery. The analyzed vegetation indices included 
normalized difference vegetation index (NDVI), normalized difference 
water index (NDWI), soil adjusted vegetation index, and normalized 
difference infrared index (NDII), to name a few. The inversion model 
utilized various models, including artificial neural network (ANN), 
Random Forest (RF), Support Vector Regression (SVR), and linear 
regression. According to their findings, moisture-based vegetation 
indices such as NDWI and NDII showed higher correlations with biomass 
and yield. Marshall and Thenkabail (2015) used a hyperspectral ground- 
based sensor and several other parameters, such as crop height, LAI, and 
vegetation cover fraction, to predict the wet biomass of several crops, 
including alfalfa. They reported a coefficient of determination (R2) of 
0.86 for alfalfa. Kayad et al. (2016) utilized Landsat satellite images to 
examine variability in alfalfa yield and to develop a model to evaluate 
how yield can be estimated using VIs (Vegetation Indices) extracted 
from Landsat data. Their yield maps showed spatial variability in alfalfa 
yield within the alfalfa field, and the correlation varied between 0.75 
and 0.97 for four monitored harvests. Valente et al. (2020) utilized UAV- 
RGB (Unmanned Aerial Vehicle Red-Green-Blue) images (8 to 16 mm 
resolution), together with transfer learning (Kaya et al., 2019), excess 
green vegetation index and the Otsu algorithm (Otsu, 1979) to count 
spinach (Spinacia oleracea; Amaranthaceae) within a field. They re
ported an accuracy of 95 % over an area of 172 m2. So far, no research 
has focused on estimating the number of alfalfa stems using remote 
sensing data.

Researchers are increasingly focusing on applying machine learning 
(ML) algorithms to agricultural production problems, as they can model 
complex non-linear relationships (Ranjbar et al., 2021). Artificial Neural 
Networks (ANNs) consist of simple linked processors called neurons, 
which generate sequences of activations with a real value (Akhavan 
et al., 2021a; Schmidhuber, 2015). Deep neural networks, particularly 
convolutional neural networks (CNNs), have revolutionized computer 
vision applications by learning complex patterns and characteristics 
from images. LeCun et al. (1989) first proposed CNN models, which 
utilize a stack of feature layers to automatically extract the efficient 
discriminating features for a given problem. The concentration of the 
first layers of CNN models is the image’s low-level features (Bangare 
et al., 2022). CNN models provide advanced features as the model 
deepens and the number of layers increases. Substantial ML and Deep 
Learning (DL) algorithms have been proposed and developed for 
different types of remote sensing images, from high resolution to coarse 
resolution, thanks to the growth of ML in recent years.

Semantic segmentation is one of the critical tasks of machine 
learning for achieving pixel-level classification (Luo et al., 2023). Se
mantic segmentation produces pixel-level descriptions of objects 
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embedded in their spatial locations instead of making predictions about 
the whole image. Semantic segmentation models have become widely 
applied to problems in various areas, specifically in agriculture, such as 
weed segmentation (Zou et al., 2021), identification of pests and dis
eases (Singh et al., 2021), and crop cover and crop type analysis (Jadhav 
and Singh, 2018). In the case of severe occlusions in segmentation 
challenges, the U-Net network can slice low-level and high-level features 
while preserving edge information with a low computational workload.

Although the research on counting the number of stems is sparse, 
some research papers focus on detecting weeds, grass, and background 
objects in an image over a field. Yang et al. (2022) utilized several CNN 
models, such as AlexU-Net and ResU-Net, and photographic images in 
diverse sizes to detect weeds among alfalfa. They reported that images of 
200 by 200 pixels delivered a more accurate model than other image 
sizes. They demonstrated that AlexU-Net was the most accurate model, 
with a precision and recall of more than 0.99. In contrast, ResU-Net was 
the least accurate model compared to other CNN models. Echeverría 
et al. (2021) investigated the potential for Sentinel-2 multispectral im
agery to assess the fractional vegetation cover in rain-fed alfalfa in 
Spain. They utilized a maximum likelihood model to classify their 
ground images into five classes: alfalfa in the sun, alfalfa in the shade, 
soil in the sun, soil in the shade, and unclassified. Their results showed 
that this simple classification method achieved an accuracy of about 95 
%.

While there is extensive research on biomass assessment and crop 
detection at the field scale, there is a notable deficiency in thorough 
studies regarding the quantification of alfalfa stems under varying 
weather conditions and growth stages across diverse locations. The main 
objective of this study is to develop a framework for counting stem 
numbers from proximal images using a combination of deep neural 
networks and machine learning algorithms. The specific objectives are 
1) to generate a dataset comprising numerous synthetic and real images 
using a pre-trained algorithm and evaluate whether the semantic seg
mentation models can be trained well or not, 2) To evaluate the capa
bilities of multiple U-net models on the dataset and develop a U-net 
model that can accurately identify alfalfa and differentiate it from other 
objects including soil, grass, weeds, and crop residue, and 3) to model 
and predict the number of alfalfa stems using the fractional vegetation 
cover of class alfalfa calculated in objective 2.

2. Materials and methods

2.1. In-situ dataset

Over two years, ground measurements including soil sampling, stem 
counts, and crop heights along with the image dataset were collected in 
461 alfalfa fields in four provinces of Canada: Nova Scotia, Quebec, 
Ontario, and Manitoba (Fig. 1). The details for each province are given 
in Table 1. The ground measurements consisted of 192 producers 
(farmers) and 33 advisors. The ground measurements are gathered when 
the crop reaches a height of 2–5 in.. A randomized design was imple
mented in each field. Spring and autumn stem counts were collected at 
each site (composed of three data points, often referred to as landmarks). 
In each quadrat, each stem (not the number of plants) of alfalfa above 
about 5 cm was counted. A ruler was utilized to measure the mean 
height of 5 stems.

For each landmark position, stem counts were measured using a 
rectangular quadrat (Fig. 2). An RGB iPad mini 5th generation camera 
was utilized to capture the images. All images have been captured about 
1 m above the ground surface over various alfalfa fields selected for the 
tests. The brightness and contrast of images vary due to their acquisition 
on different dates, in different weather conditions, at various times of 
day, and various growth stages. Over 10000 images were captured 
throughout the field campaign. A total of 2222 images were utilized in 
this research. Only images captured in near-perpendicular position to 
the Earth’s surface were utilized. The resolution of the images is 1632 by 
1224 pixels. Patches of 256 by 256 pixels have been extracted from the 
original images. In total, 3447 alfalfa images, 5332 grass images, and 
9241 background images were available. Also, 1011 alfalfa images, 269 
grass images, and 380 background images were selected for the test 
dataset. The best and most accurate efforts have been made to include 
every possible situation in the training data: alfalfa, alfalfa in sun, alfalfa 
in shadow, and alfalfa in different growth stages. For the background, 

Fig. 1. Study area and data collection sites (red points) in 2021 and 2022.

Table 1 
The details of the number of fields for each province.

Provinces #N of fields

Manitoba 34
Nova Scotia 5
Ontario 13
Quebec 409
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soil in sun and shadow, dead grass, and various quadrat types are 
included in the training data. The dataset used in this research is 
currently not publicly accessible.

A sample of patches for each class is displayed in Fig. 3.

2.2. Data Preparation and augmentation

Several challenges are associated with using supervised learning 
methods in agricultural image segmentation. One is the lack of suffi
ciently labeled datasets, which may negatively affect the training pro
cess (Kamilaris and Prenafeta-Boldú, 2018). Data augmentation is 
essential when using deep learning methods to solve minor sample 
problems since the diversity and quantity of training data affect the 
robustness and generalization of deep learning models (Kamilaris and 
Prenafeta-Boldú, 2018).

Data augmentation can be conducted by applying rotation, flip, 
image transformation, and enhancement methods or by creating syn
thetic images. One of the main advantages of synthetic images is the 
ability to generate diverse and precisely annotated datasets. Creating 
real-world datasets with pixel-level annotations can be time-consuming, 
labor-intensive, and expensive (Ge et al., 2023). Synthetic images enable 

researchers to generate ground truth labels automatically, accelerating 
model development and testing. Moreover, synthetic datasets can 
encompass a wide range of environmental conditions, lighting varia
tions, and object configurations, aiding in the generalization of models 
to different scenarios. Therefore, in addition to popular augmentation 
methods, such as rotation (90◦, 180◦, 270◦) and horizontal and vertical 
flip, synthetic images is used to augment the dataset and to reduce the 
number of samples that need to be manually labeled. A pre-trained 
ResU-Net model with attention gates trained in our lab by Maryam 
Rahimzad has been utilized to annotate training and testing data. This 
pre-trained model classifies three classes: vegetation, crop residue, and 
and background, including soil and shadow, utilizing RGB images. In 
that case, the model could only predict green pixels as vegetation. Since 
grass, weeds, and alfalfa have almost the same spectral reflectance (both 
are green), we must classify grass and alfalfa separately.

Since the classes are separated in our database (especially grass and 
alfalfa), synthetic images and masks for the model and conventional 
data augmentation methods have been utilized to increase the volume of 
data so the model can learn the problem better. Conventional augmen
tation methods utilized in this study consist of rotation 90, rotation 180, 
rotation 270, horizontal flip, and vertical flip, together with the original 

Fig. 2. Landmark (no. 1 of 3 with a distance of 1 m) placed in the sampling site (a), measurements were taken within the red rectangle (1 ft. x 1 ft.) placed on the 
corner of each landmark (b).

Fig. 3. Sample of patches for each class of a) alfalfa, b) grass, and c) background (combination of soil, quadrat, dead grass, and shadow, among others).

H. Bahrami et al.                                                                                                                                                                                                                               Computers and Electronics in Agriculture 232 (2025) 110115 

4 



image without augmentation. Due to the large number of background 
and grass images compared to alfalfa images, only three augmentation 
methods for grass and one augmentation for background have been 
utilized.

Fig. 4 illustrates the fusion process of an alfalfa patch with a back
ground class patch to create a synthetic patch for training. Based on the 
pre-trained model, the mask of class vegetation was extracted. By 
considering the mask of green areas (here is alfalfa) extracted from the 
pre-trained model, the alfalfa is extracted from the real patch. As a 
result, the vegetation part has been masked out precisely. For the 
remaining part of the image required to create a synthetic picture, a 
randomly selected image of background or grass has been considered. 
Finally, a synthetic image has been generated by combining the alfalfa 
patch and the background patch. As can be seen in Fig. 4, the synthetic 
image resembles a real image. As previously discussed, this tool can also 
simulate various conditions. Also, The original image was added to the 
training data as a real image.

An example of creating a synthetic image with a combination of al
falfa and grass can be demonstrated in Fig. 5.

It should be noted that we have a combination of grass and back
ground pixels for grass images. As can be seen in Fig. 5, black is for the 
background (class 0), grey is for alfalfa (class 1), and white is for grass 
(class 2).

Using the pre-trained model, we annotated around 60,000 images in 
roughly an hour in this research. As stated in section 2.1 of the in-situ 
dataset, the quantity of patches across various classes is unequal. Data 
augmentation was employed to mitigate data imbalance to the greatest 
extent possible. The total number of pixels for each class is summarized 
in Table 2.

Several examples of the generated synthetic images and the corre
sponding mask can be seen in Fig. 6.

2.3. Proposed methodology

The primary goal of this study was to count the number of alfalfa 
stems in proximal images. Nonetheless, direct stem counting proved 
impossible in the proximal images utilizing existing and advanced 
models. Consequently, we proposed detecting alfalfa in the images in the 
first step and then utilizing the detected alfalfa fractional cover to 
quantify the number of stems. This research proposes a practical 
framework that combines deep CNN encoder-decoder models with ma
chine learning regression models to meet the objective of stem counting. 
This study utilizes and assesses a few advanced encoder-decoder models 
to detect alfalfa in proximal images and distinguish it from other objects 
in fields, such as soil, grass, and weeds, using a combination of synthetic 
and real images. An evaluation was conducted to examine the impact of 

attention gates and residuals on semantic segmentation accuracy with a 
U-Net-based model. Following training the deep encoder-decoder 
models to detect alfalfa in the images, the subsequent task of esti
mating and counting the number of alfalfa stems was carried out by 
utilizing the alfalfa fractional cover computed for each image. Then, 
various machine learning regression algorithms, including random for
est (RF), support vector regression, and Extreme Gradient Boosting 
(XGB), were trained to quantify the number of alfalfa stems measured 
within the fields. The regression models stated above were fed with 
fractional vegetation cover and aimed to predict the number of stems per 
square foot in the image (Fig. 7).

2.4. Network architecture

Fig. 8 illustrates an overview of the proposed architecture. Various 
parts of the model have been described below.

2.4.1. Encoder path
The encoder path consists of four layers, each containing a Unet 

block and a 2 × 2 Max-pooling layer. Our model takes an input of 256 ×
256 × 3, where the image size is 256 × 256, and we have three channels 
corresponding to the RGB band of an image. The unet blocks comprise 
two convoluted layers (Fig. 9-a). Each layer starts by a convolution layer 
followed by a Batch Normalization (BN) layer (i.e., input re-centering 
and re-scaling (Ioffe and Szegedy, 2015)) and a Rectified Linear Unit 
(ReLU) activation function (negative inputs = 0, positive values are 
returned as outputs). The first unet block has 16 feature maps of size 
256 × 256. During downsampling (i.e., random removal of majority 
class observations), which reduces the dataset, especially class imbal
ances, the number of feature maps doubles, and each layer’s size is 
halved. Therefore, the unet block at the fourth layer has 128 feature 
maps of size 32 × 32. The convolutional blocks in all encoder layers have 
a dilation rate of 2.

2.4.2. Bottleneck
A bottleneck layer connects an encoder and a decoder. It contains a 

unet block with 256 feature maps of size 16 × 16. In the bottleneck 
layer, the output moves in two directions. The output is fed into the 
convolutional transpose layer.

2.4.3. Decoder path
Each of the four layers of the decoding path begins with a U-Net 

block followed by a 2 × 2 up-convolution layer. A skip connection 
connects each decoder layer to the corresponding encoder layer. 
Upsampling (increasing the dimensions or cases of the dataset, cf. 
downsampling) is performed using a 2 × 2 up-convolution layer. The 

Fig. 4. An example is generating synthetic images by combining alfalfa and background objects (soil, crop residue, etc).
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skip connection is concatenated with the upsampled decoder output 
from the previous layer. Unet blocks receive the output of concatena
tion. The same unet blocks are used as those in the encoder path. Each 
decoder layer reduces the number of feature maps by half while 
doubling their size. The output of the unet block at each layer is 
upsampled to the size of 256 × 256 and passed through a classification 
layer and softmax activation function (normalized exponential 
function).

The classification layer reduces the number of feature maps to three 
channels. Feature maps are converted into probabilities using softmax 
activation. Thus, each channel in the final output is transformed into a 
probability map corresponding to a particular class. Based on these 
outputs, the loss is calculated by comparing them to the ground truth.

Fig. 9 illustrates how our proposed model uses the residual blocks 
and the attention gate, respectively.

2.4.4. Loss function
The present study utilizes combined categorical focal loss (CFL) and 

weighted Jaccard loss (WJL) to segment Alfalfa images. The weights of 
the Jaccard loss were assigned according to the pixel count in the 
training data to address data imbalance. Consequently, the grass and 
alfalfa classes were given greater weights, while a smaller weight was 
assigned to the background class. A combined loss (CL) function is ob
tained by using the following equation to train the proposed model. 

CL = WJL+CFL (1) 

2.4.5. Hyperparameters Optimization
In the final step of our investigation, we performed a comprehensive 

grid search to optimize multiple parameters and hyperparameters, 
evaluating various CNN architectures (Simple U-Net, Att U-Net, and Att 
ResU-Net), the initial number of features (8, 16, 32), batch sizes (8, 16, 
24, 36), learning rates (1e-3, 1e-4, 1e-5), and optimizers (Adam, SGD). 
We evaluated each parameter and ultimately identified the optimal 
parameters for the models. We trained the models, computed the ac
curacy, and determined that the optimal number of initial features was 
16, the ideal batch size was 24, the most effective learning rate was 1e-4, 
and the best optimizer was Adam (Kingma and Ba, 2014). We utilized 
these parameters to train the models.

Fig. 5. An example of generating a synthetic image by combining alfalfa and grass.

Table 2 
Details regarding the number of pixels for each class.

Class Number of training pixels Percentage (%)

Background 2,066,690,212 52
Alfalfa 1,030,889,364 26
Grass 866,824,136 22
Total 3,964,403,712 100

H. Bahrami et al.                                                                                                                                                                                                                               Computers and Electronics in Agriculture 232 (2025) 110115 

6 



2.4.6. Evaluation criteria
Confusion matrices are widely used to evaluate the performance of 

classification algorithms and form the basis of receiver operating char
acteristics (ROC) assessments and the Kullbeck-Leibler (relative en
tropy) divergence (Fawcett, 2006).

The confusion matrix is a table with two rows and two columns that 
reports the number of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN).
Recall measures the model’s ability to identify the positive cases and 

It becomes essential to identify and address missing positive cases. 
Recall is calculated as Equation 2. High recall indicates that the model 
has a strong ability to correctly identify positive cases. A model’s pre
cision is determined by its positive detection accuracy and is computed 
as Equation 3. High precision implies that the model has a minimal 

Fig. 6. Several data examples generated by the combination of real and synthetic images.

Fig. 7. The flowchart of the proposed methodology in this study.
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occurrence of false positives. Also, the F1-score is a harmonic average of 
recall and precision, and it is useful when you need to take both false 
positives and false negatives into account. (Equation 4). Intersection 
over Union (IoU) is a commonly utilized evaluation metric for image 
segmentation models (Equation 5). It measures the overlap between the 

predicted segmentation mask and the ground truth mask. Finally, ac
curacy is a criterion that measures the percentage of correctly classified 
cases in the whole dataset and is calculated according to Equation 6. 

Recall =
TP

TP + FN
(2) 

Fig. 8. The adapted architecture of Attention Residual U-Net in this study.

Fig. 9. The details of U-Net blocks (a), residual blocks (b), and the details of attention blocks (c).
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Percision =
TP

TP + FP
(3) 

F1 − score = 2*
Precision*Recall

Precision + Recall
=

2*TP
2*TP + FP + FN

(4) 

IoU =
TP

TP + FP + FN
(5) 

Accuracy =
TP + TN

TP + FP + TN + FN
(6) 

2.5. Estimating alfalfa stems

When the model was trained, the original images of size 1632 by 
1224 were given to the model. The number of pixels of alfalfa, divided 
by the total number of pixels, was then computed. If this value is 
calculated for an image as 0.5, it means that 50 percent of the image is 
alfalfa. Machine-learning algorithms were utilized to create a regression 
model between the alfalfa cover fraction, and the number of alfalfa 
stems in an image. The numbers of alfalfa stems were measured in a one- 
foot square quadrat (~30 × 30 cm). Many areas have recently used 
machine-learning algorithms in classification and regression problems. 
This study used regression models, i.e., RF (Random forest), XGB 
(Extreme Gradient Boosting), and SVR (Support Vector Regression), to 
estimate the number of alfalfa stems in an image. ML algorithms were 
implemented using the open-source Python Scikit-learn package. We 
had 2222 images, and the Alfalfa cover fraction has been calculated for 
these images. The data were divided into training and test datasets. 
Eighty percent of the data was selected to train the models, and the 
remaining data (i.e., 20 %) were used for testing. Grid Search Cross- 
Validation (GridSearchCV, a function in the Scikit-learn package) with 
a cross-validation value of 5 was used to tune the hyper-parameters of all 
machine-learning algorithms.

2.5.1. Random forest regression
As a robust ensemble learning method, RF is extensively used in 

classification and regression problems (Akhavan et al., 2021b). 
Ensemble learning refers to the process of producing multiple models 
and combining them in order to solve a particular problem. Two types of 
ensemble learning are boosting and bagging.The RF approach is a 
practical bagging approach based on many individual decision trees. 
The model then combines all predictions to achieve a better perfor
mance by combining every tree’s prediction (Dangeti, 2017). The 
GridSearchCV parameters that were used in the RF are shown in Table 3.

2.5.2. Support Vector regression
One of the most widely used kernel-based machine learning algo

rithms is the support vector machines (SVMs) algorithm developed by 
Vapnik and his colleagues (Sheykhmousa et al., 2020). This algorithm 
can be used for various problems, particularly classification problems. 
While maintaining all algorithm characteristics, such as the maximal 
margin, SVM can also be applied to regression problems. In SVR, we can 
define the acceptable error level in our model and find a line (or hy
perplane in higher dimensions) that fits the data well. In this manner, 
the points outside the tube receive penalization; however, the prediction 
function receives no penalization for the points inside the tube, either 
above or below the centerline. The Grid Search parameters used for the 
SVR model are shown in Table 4.

2.5.3. Extreme gradient boosting
XGB (Brownlee, 2016) is one of the most popular gradient-boosting 

implementations, and it was first developed by Tianqi Chen in 2001 as a 
research project. The algorithm is based on a gradient-boosting frame
work and is an ensemble machine-learning algorithm. XGB enhanced a 
machine learning model’s performance, speed, flexibility, and effi
ciency. The Grid Search parameters used for the XGB algorithms are 
shown in Table 5.

2.5.4. Evaluation criteria
Several criteria were used to evaluate prediction performance, 

including RMSE, Mean Absolute Error (MAE), and the coefficient of 
determination (R2). The formula of the RMSE is as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(ŷi − yi)

2

N

√
√
√
√
√

(7) 

where N is the number of observations.
RMSE provides a quantifiable indication of the extent to which these 

residuals are distributed. A smaller RMSE reflects a superior alignment 
between the model and the data. RMSE is highly sensitive to large errors 
due to its utilization of the squared residuals. MAE is calculated as the 
following equation: 

MAE =

∑N
i=1|ŷi − yi|

N
(8) 

MAE is a simple and precise metric that quantifies the average size of 
errors in a given set of predictions, regardless of their direction. MAE 
exhibits greater resistance to large errors in comparison to RMSE, giving 
it valuable when seeking a statistic that is less susceptible to outliers. 
However, while RMSE squares each error prior to averaging, it dispro
portionately penalizes larger deviations. This is advantageous in cases 
where large mistakes are highly costly or undesirable. The last evalua
tion criterion used in this study is the R2, calculated as follows: 

R2 = 1 −

∑N
i=1(ŷi − yi)

2

∑N
i=1(ŷi − y)2 (9) 

R2 ranges from 0 to 1. A value of 1 for R2 indicates that the regression 
model accurately predicts the dependent variable, whereas a value of 
0 shows that the model fails to account for any of the variations in the 
dependent variable. Higher R2 values generally indicate a better fit of 
the model.

Table 3 
GridSearchCV parameters that were used in the RF model.

Parameters Description Grid Search Values

n_estimators No. of trees in the forest 25, 50, 100, 500
max_depth Maximum depth of the trees 3, 4, 5

Table 4 
GridSearchCV parameters set for the SVR.

Parameters Description Grid Search Values

Kernel Specifies the kernel type to be used in the 
algorithm.

’linear’, ’rbf’

Gamma Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. 0.001, 0.01, 0.1, 
0.5

C Penalty parameter 5, 10, 50, 100

Table 5 
GridSearchCV parameters set for the XGB.

Parameters Description Grid Search Values

learning_rate Shrinks the contribution of 
each tree

0.001,0.005,0.01,0.05,0.1,0.15,0.3

n_estimators The number of boosting 
stages to conduct.

10, 30, 50, 100

max_depth Limits the number of nodes 
in the tree.

4, 5, 6, 7
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3. Results

After preparing the dataset, the U-Net models were trained on the 
dataset. Fig. 10-a and − b show the loss function plots for training and 
validation data. As can be seen, there is no sign of over-fitting. None
theless, Fig. 10 illustrates the unstable validation accuracy and loss 
throughout the training of a U-Net model. This could originate from a 
small batch size, which might produce noisy gradient estimates, 
consequently impacting loss stability. Due to GPU limitations, we could 
not increase the batch size beyond 32. Furthermore, as illustrated in 
section 2.2, the validation set is disproportionately small relative to the 
training data, even before data augmentation. This may be another 
cause of the instability of validation loss and accuracy compared to 
training metrics.

Table 6 shows the results of the model for validation data. All three 
classes have recall values greater than 0.9, as shown in the table. This 
model has demonstrated a very high accuracy with an overall accuracy 
of 0.97 for simple U-Net. The results showed that alfalfa and background 
have been detected with considerably high accuracy (precision of 0.99 
for both classes and recall of 0.99 and 0.94 for background and alfalfa, 
respectively). The precision for the background is the highest among the 
classes, as 0.99 were reported using attention ResU-Net and simple U- 
Net for f1-score, recall, and precision, respectively. The results also 
showed that grass had been detected with the lowest accuracy compared 
to the other classes in terms of precision value, with the highest value of 
0.80, resulting in precision.

Furthermore, the comparison results showed that simple U-Net has 
slightly better accuracy than other models. The overall accuracy for 
simple U-Net is 0.97, while the accuracy for attention U-Net and 
Attention ResU-Net is 0.96. The accuracy criterion for grass in simple U- 
Net is better than for attention U-Net and ResU-Net. Results of Inter
section over Union (IoU) for training and validation data are summa
rized in Table 7. Both background and alfalfa have been well detected. 
The IoU of grass was low in all U-Net models. The IoU of grass in simple 
U-Net was better than attention U-Net and ResU-Net.

3.1. Prediction of the test data

Fig. 11 and Fig. 12 depict several examples of validation images of 
alfalfa and grass and the corresponding mask, along with the prediction 
of the model by attention ResU-Net. These results show that the model 
learned the problem relatively well. Fig. 11 illustrates that alfalfa can be 
effectively detected under various lighting and weather circumstances. 
The initial four rows of Fig. 11 depict alfalfa in bright environments, but 
the final row illustrates a dark scenario. Furthermore, nearly all images 
in Fig. 11 indicate that alfalfa shading can be accurately detected as the 
class background.

Fig. 13 shows a few examples of the original image taken with an 
iPad. The images were captured in the fields, and the model has not seen 
them during either training or validation. Model predictions indicated 

that it can accurately detect alfalfa in an image. The images were 
captured at various growth stages under varying weather and lighting 
conditions. The predictions indicate that the model can to detect alfalfa 
under dark (first two rows) and sunny (last four rows) circumstances. 
Yellow, green, and purple colors show the background, alfalfa, and 
grass.

3.2. Automated stem counting

In total, the alfalfa stem count data were available for 2222 images, 
together with the good condition of the imagery. Since the model input 
must be a size of 256 by 256 pixels, the images were first resized to the 
nearest multiple of 256 for both height and width. Patches of 256 by 256 
were then extracted from the image and predicted by the model. The 
total coverage of alfalfa in each image has been calculated. The rela
tionship between the alfalfa cover fraction and the number of alfalfa 
stems is shown in Fig. 14-a. The 2D histogram of alfalfa cover fraction 
and number of stems is depicted in Fig. 14-b. We utilized several ML 
algorithms to predict the average number of alfalfa stems in a square 
foot. It should be noted that, for the regression, the number of stems 
greater than 120 was truncated, having been replaced by 120.

The results of various ML algorithms can be seen in Fig. 15 and 
Table 8. The results showed a considerable correlation (R2 = 0.79) be
tween the alfalfa cover fraction in an image, and the number of alfalfa 
stems per square foot. We added average crop height (in centimeters) to 
the alfalfa cover fraction as an auxiliary feature, slightly improving 
prediction accuracy. The results showed that RF (Random forest), with 
the addition of height, slightly improved the accuracy of ML algorithms. 
The value of R2 for predicting the number of stems using RF was 0.83. By 
adding height, RF showed a slight improvement compared to RF only 
using the alfalfa cover fraction, in which the value of R2 was 0.82. 
Among the models that utilized only alfalfa cover fraction as input, RF 
was the best model in terms of mean absolute error (MAE); 10.07 was 
reported for MAE. The extreme gradient boosting (XGB) had the same R2 

value as the RF. Yet, the MAE of the XGB was lower than those of the RF 
(RMSE = 13.00; MAE = 10.09). SVR yielded the worst accuracy among 
ML algorithms with R2 of 0.81, RMSE of 13.27, and MAE of 10.32. 
Among the models created using alfalfa cover fraction and average crop 
height, RF outperformed other ML algorithms with an R2 of 0.83, RMSE 
of 12.59, and MAE of 9.64. XGB was second in terms of highest accuracy 
with R2 of 0.83, RMSE of 12.7, and MAE of 9.68. In all models, satura
tion can be observed when the number of stems exceeds 100. One of the 
reasons that could be responsible for these results is that we do not have 
sufficient data for the number of images, which is more than 100.

Alfalfa yield may decrease with plant densities ranging from 40 to 55 
stems per square foot. Research has shown that stands should be 
replaced if the plant density drops below 40 stems per square foot. Stem 
density beyond 55 does not restrict the production. According to the 
above rationale, the observation and estimation values of stems utilizing 
the RF regression model have been categorized into three classes. We 

Fig. 10. Training and validation loss (a), and accuracy (b) of the model.
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identified five stems as errors in the prediction model. We categorized 
the classes as follows: 1) less than 35 stems as class 1, 2) between 35 and 
60 as class 2, and 3) more than 60 as class 3. We computed the confusion 
matrix for the observed and predicted classes. It should be noted that the 
confusion matrix is not a straight regression product; rather, it is a post- 
processing output associated with the interpretation of findings. Fig. 16
shows the results. The graphic clearly shows that allowing a five-stem 
mistake allows the model to anticipate needing to re-seed the field 
with 86 % accuracy. The model can accurately predict class three with a 
91 % success rate. Therefore, the model can effectively identify high- 
density alfalfa. Class 2 has the lowest accuracy compared to the other 
classes. The problem can arise at the boundary between classes since the 
number of stems is a continuous variable that we cut and divided into 
three classes. We believe that the border region (40 and 60 stems) is the 
source of this error. This prediction can accurately distinguish between 
classes 1 and 3 without any misclassified values.

3.3. Assessing the models

Upon ensuring the accuracy and proper training of the deep learning 
and machine learning models, we integrate the models into a sequential 
architecture to accomplish the ultimate goal of stem counting and make 
the models practical. We developed a Graphical User Interface (GUI) 
using Python. In this GUI framework, the user only needs to select the 
image captured of their fields. The alfalfa detection will be displayed 
within seconds. Furthermore, utilizing the alfalfa fractional vegetation 
cover computed in the previous step, the number of stems will be esti
mated and presented to the user. Fig. 17 illustrates three alfalfa images 
subjected to varying density conditions fed into the framework. The 
model did not detected any alfalfa stems in Fig. 17-a, indicating alfalfa 
absence in the image. The quantity of stems has been determined to be 
zero. Fig. 17-b depicts an area of relatively dense alfalfa. The alfalfa has 
been accurately identified, with an estimated density of 59 stems per 
square foot. Fig. 17-c presents a densely populated view of alfalfa. Most 
of the image has been covered by alfalfa, leading to a significant alfalfa 
fractional cover. The elevated value of fractional cover results in a high 
prediction of stems by the machine learning regression models (87 
stems/foot2).

4. Discussion

We applied pixel-based segmentation models to detect alfalfa and 
discriminate it from other objects over the alfalfa fields in this study. 
Pixel-based segmentation models have advantages and limitations 
compared to non-pixel segmentation techniques, such as the Segment 

Anything Model (SAM) or GroundedSAM. A pixel-based semantic seg
mentation model offers precise segmentation at the pixel level, making it 
suitable for tasks that demand great precision, such as precision agri
culture. SAM and GroundedSAM are general-purpose models trained for 
broad application, which may not always correspond exactly with spe
cific domain needs. U-Net designs can be readily modified for particular 
datasets by adjusting their depth, filter sizes, and loss functions, making 
them exceptionally adaptable for domain-specific applications. One 
drawback of pixel-based segmentation models is that training such 
models requires labeled pixel-wise ground truth, which is expensive and 
time-consuming to construct. SAM and GroundedSAM can work with 
limited input (e.g., bounding boxes or clicks) and do not consistently 
necessitate pixel-level annotations. Nonetheless, as previously stated, 
the dataset utilized in this study was generated using a pre-trained 
model, and the entire labeling procedure was not much more than one 
hour. Consequently, we were not faced with the issue of the laborious 
data labeling process. However, it should be noted that using more 
advanced U-Net models and transformers may improve the accuracy of 
alfalfa detection.

By interpreting the MAE calculated in almost all regression models, 
this value was ~10. This value tells us that the typical difference be
tween our model’s predictions and the actual alfalfa stems is ~10. Since 
the range of alfalfa stems was between 0 to ~120 stems, an MAE of ~10 
indicates that the average error rate of the models is ~8.3 %, which is an 
acceptable value. Also, an RMSE of ~13 shows that we can expect 68 % 
of the stem values to be within 1 RMSE, given that the data is normally 
distributed. As shown in Fig. 18, most points are in the mean of ± RMSE. 
For the stem values of ˃80, the residual gets worse. However, in alfalfa 
fields, more than 55 stem values are considered highly dense alfalfa, and 
no re-seeding is required. Also, alfalfa stems under 40 are considered 
low density, and re-seeding may be considered for farmers. Therefore, 
based on the output of these models, we can expect that if the model 
prediction is <30 (40 – MAE), re-seeding may be necessary for farmers.

The results of this paper have shown that the number of alfalfa stems 
can be predicted from proximal imagery (iPad like) with relatively high 
accuracy, even though it’s a complex process. Counting the number of 
stems depends upon various parameters, such as the height and tilt of 
the device taking the image, the growth stage and height of crops, 
whether the device is properly focused, and the weather and illumina
tion conditions. If the device’s height is very close to the crop’s, the 
alfalfa cover fraction resulting from the U-Net model may be misleading. 
In this paper, we attempted to select the images with the imaging height 
at the standard level, meaning that the images were neither too close nor 
too far from the crop. Further, the device’s tilt may result in the incorrect 
recognition of alfalfa in the images. Fugrthermore, we attempted to 

Table 6 
The detaild results of the model.

Attention ResU-Net Attention U-Net Simple U-Net

precision recall f1-score precision recall f1-score precision recall f1-score

Background 0.990 0.987 0.989 0.994 0.984 0.989 0.989 0.989 0.989
Alfalfa 0.990 0.934 0.961 0.989 0.936 0.962 0.994 0.937 0.965
Grass 0.792 0.978 0.874 0.784 0.979 0.872 0.801 0.986 0.884
Overall Accuracy 0.962 0.961 0.965

Table 7 
Results of Intersection over Union (IoU) for training and validation data using various U-Net models.

IoU

Attention ResU-Net Attention U-Net Simple U-Net

Training Validation Training Validation Training Validation

Background 0.983 0.977 0. 984 0.978 0.985 0.979
Alfalfa 0.988 0.929 0.988 0.929 0.988 0.934
Grass 0.972 0.780 0.973 0.779 0.976 0.798
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include all growth stages in the training data. For the segmentation 
model if the crop is in the early growth stage, the alfalfa cover fraction 
results derived from the model may not correctly predict the number of 
stems in an image. Besides, color modifications and transformations can 
also be utilized for image correction. Non-linear filtering algorithms can 
also correct the blurry condition of images (Darwin et al., 2021). 
Although we tried to add crop height as an additional auxiliary 
parameter to address the problem of being at the early growth stage, the 
results showed that adding height does not considerably improve ac
curacy: the computation time and error rate increase when background 
complexity is present (Darwin et al., 2021). Furthermore, as the training 
data for this study was obtained from an RGB iPad Mini 5th generation, 
we remain unsure whether our model is compatible with RGB images 

captured by other sensors and devices. We will do testing in the near 
future, and if the model fails to perform with RGB images from other 
sensors, we intend to include more training data from these sensors and 
retrain the models accordingly. This ensures that the models are func
tional regardless of the device type.

While the model performs exceptionally well on numerous unseen 
data, there are cases where it struggles to differentiate between classes. 
Fig. 19 depicts several situations in which the model could not differ
entiate the classes appropriately. The model faces challenges with 
detecting grass branches in areas covered with alfalfa. We believe that 
this issue arose because the model incorrectly classified these branches 
as alfalfa stems. Fig. 19-a, b, and c illustrate examples where the model 
failed to distinguish the tiny grass branches in the images. The model 

Fig. 11. Prediction of the model over images of the combination of alfalfa and background images.
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also encountered trouble differentiating certain weeds from the alfalfa 
class (Fig. 19-d). Although we included images of weeds in class grass 
and trained the model with these images, we observed that the model 
still needs more data to be fully able to discriminate various kinds of 
weeds from alfalfa. We believe this issue arose from an insufficient va
riety of weed data used in the training dataset. Owing to this lack of data, 
the models could not distinguish all kinds of weeds from other classes in 
the newly captured images. We intend to collect more images of various 
weed species in the alfalfa fields, incorporate them into the training 
dataset, and retrain the models. Another challenge that the model faced 
in identifying the classes was the cases that the color of the alfalfa leaves 

and stems was not quite green (Fig. 19-e and f). The number of images 
exhibiting this was limited. We believe this may be due to the alfalfa 
leaves and stems not being entirely fresh and vibrant.

The model demonstrated excellent performance on over 500 newly 
collected images, as we incorporated a comprehensive range of image 
types in the training dataset, including various weather conditions, 
lighting scenarios, and growth stages of alfalfa. The model correctly 
classified alfalfa and distinguished it from other objects. We intend to 
increase the training data with extra images to enhance the model’s 
robustness and enable it to work in new and unseen scenarios. Besides, 
we believe including additional bands, such as near-infrared bands, 

Fig. 12. Prediction of the model over combinations of grass and background images.
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Fig. 13. Several examples of original iPad images, correspondingmask predicted by the model, and alfalfa mask class on the original image.

Fig. 14. Relationship between the number of alfalfa stems and alfalfa cover fraction in iPad images, presented as a) a scatter plot, and b) in a 2D histogram.
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could enhance detection accuracy. Despite the potential high cost of 
utilizing equipment with near-infrared bands, we believe that incorpo
rating data beyond RGB bands can considerably enhance the accuracy of 
alfalfa detection.

The methodology stated in this study aims to be applied through the 
construction of a mobile-based application and a website, both of which 
will be accessible to farmers throughout Canada as an initial step. 
Furthermore, we developed a graphical user interface program in 

Python. Users can easily upload an image or pass a directory, and all 
images will be processed, and results will be calculated and stored 
immediately. We evaluated the interface and found that an image re
quires 1.98 s to be fully processed. One drawback of the Python interface 
is that some individuals might not comprehend Python. Consequently, 
they will find it challenging to figure out the interface. To this end, the 
mobile-based application will be beneficial for the users. The application 
requires no prior knowledge of Python or any other programming lan
guage, allowing users to capture images and get the results immediately. 
Moreover, mobile-based applications are advantageous over web-based 
applications because they do not require an internet connection. This 
capacity makes mobile applications beneficial in remote areas and lo
cations where the internet is unavailable.

It should be noted that this framework only works for alfalfa. How
ever, the proposed encoder-decoder model used in this study can be 
applied in various domains of precision agriculture. This model could be 
particularly effective at differentiating crops from other background 
elements, including soil, agricultural residue, and dead crops or grass. 
By utilizing this model, we can detect the fresh and green crop sections 

Fig. 15. Scatter plots of observed and predicted stem values in a) RF, b) RF including average crop height, c) SVR, d) SVR including average crop height, e) XGB, and 
f) XGB including average crop height.

Table 8 
The results of machine learning regression models in estimating the number of 
alfalfa stems.

RF SVR XGB

without 
height

with 
height

with 
height

without 
height

with 
height

without 
height

RMSE 13.00 12.59 13.27 13.26 13.00 12.70
MAE 10.07 9.64 10.32 10.06 10.09 9.68
R2 0.82 0.83 0.81 0.81 0.82 0.83
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and use this product for other post-processing sections, such as biomass 
and yield calculation. This model is highly effective for detecting grass 
and weeds in fields. Additional data is required to enhance the training 
set for improved detection of various weed types in agricultural fields.

5. Conclusion

This paper investigated the feasibility of various U-Net models to 
classify and detect Alfalfa using iPad images. After detecting alfalfa in 
the images, several machine learning regression models have been uti
lized to count the average number of alfalfa stems in a square foot. All U- 
Net models displayed strong capability in detecting alfalfa within the 
images. Testing the final models over real images showed that the model 

could detect alfalfa and easily distinguish it from grass and weeds across 
a crop field. It was further observed that utilizing synthetic images to 
simulate different conditions over a field was an excellent choice for 
annotating many images and training the model. The results showed 
that the simple U-Net was the best model with the highest accuracy 
among all U-Net models. The results also showed that by adding atten
tion gates to the ResU-Net model, the model’s accuracy did not 
considerably improve. A comparison between various regression models 
used by this study showed that RF was better at predicting the number of 
alfalfa stems than SVR and XGB. A real-time crop yield estimate can be 
obtained using the methods proposed in this paper. Although the results 
of this paper showed the capability of machine learning and deep 
learning models in detecting and estimating alfalfa over a field, some 
conditions must be met before taking images to have more accurate 

Fig. 16. The confusion matrix between the stems’ observation and prediction 
values rcalculated using the RF regression model. Class 1 is defined as having 
between 0 and 35 stems, Class 2 as having between 35 and 60 stems, and Class 
3 as having more than 60 stems.

Fig. 17. Some examples of feeding the framework proposed in this study with different images of varying alfalfa densities.

Fig. 18. Scatter plot of observed and residual values for RF model.
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results.
The methodology outlined in this study aims to be implemented 

through the development of an application and a website, both of which 
will be accessible to farmers throughout Canada as an initial step. Both 
the application and the website require only an image as input acquired 
by a mobile device (smartphone, tablette or similar device with RGB 
imaging capabilities). Through the utilization of the program, farmers 
may conveniently survey their fields, take an image, and swiftly identify 
the presence of alfalfa while accurately estimating the quantity of stems 
in a matter of seconds. This program resolves the time-consuming and 
laborious process of traditional counting methods. In our future work, 
we intend to utilize drone technology and various spatial–temporal 
satellite imagery to identify and estimate the fraction of alfalfa cover, as 
well as estimate the number of stems. All of the aforementioned models 
are intended to be implemented in both the application and the website.
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